Option pricing and model calibration with neural networks

Halász Kristóf, ELTE

Thesis advisor: Dr. Fáth Gábor

2025.06.17.

- Derivatives
 - Option, barrier option
- Price: infimum of the prices of hedge strategies
 - Dynamic delta hedging
- In the options market prices are quoted in implied volatility
 - Convention to which implied volatility

"Implied volatility is the wrong number to put into the wrong formula to get the right price." Riccardo Rebonato

- We are also interested in the sensitivites or risks
 - Partial derivatives of input parameters (underliers)
 - "option greeks"

- Black-Scholes-Merton model, 1973
 - First consistent option pricing model
 - Closed formulas for vanilla options
 - Constant volatility

- Problems with the BS model
 - Volatilities calculated from prices observed in the market do not reflect the constant volatility assumption
 - Implied volatility is dependent on expiry and strike
 - Skews and smiles of the implied volatility surface
- More complex dynamics are able to capture the properties of observed implied volatility surface
 - Local volatility models
 - Stochastic volatility models
 - Jump models

- Basic payoffs in most of the cases have fast (semi-)analytical solution for the price
- Exotic payoffs often require numerical algorithms
 - Analytical formula is not known
 - PDE solvers, tree based methods, Monte-Carlo simulation
- Solving for the BS implied volatility is also an iterative numerical algorithm
- Stochastic yield curve modelling, including jump processes, stochastic time-change, ...?

Introduction: neural networks

- Class of machine learning algorithms
 - Learn complex relationships or patterns in the data
 - Prediction
- Feedforward neural networks
 - Composition affine transformations and non-linear activation functions
- Convolutional DNN, Resnet, LSTM, ...
- Black box
- In most real world applications, DNNs are used to approximate an unknown function in a data driven fashion.

Neural networks for derivative pricing

- DNNs can be used to approximate known functions
- Why?
 - Calculation leads to inefficient algorithm
 - Partial derivatives require numerical approximation
- Evaluation of DNNs is efficient
 - O(size of computational graph)
 - Backpropagation algorithm provides the partial derivates in the same complexity
 - All of them at the same time
- In derivative pricing, these properties can lead to significant computational speedup
 - Approximation ≠ arbitrage free

Neural networks for derivative pricing

- Cons:
 - DNNs extrapolate poorly
 - Overfitting: accuracy is very high for the prices, but poor for the greeks
- Data?
 - Market observations
 - Synthetic data generation

• Training on synthetic datasets are pricing model dependent

Results: BS model

- Implementation in Python
 - Perfomance limitations
 - PyTorch, Tensorflow
- Greek regularization
 - Derivative informed learning
 - MSE of the neural network to the exact greeks are added to the price-MSE in the loss function
 - Less prone to overfitting
 - Accelerate training process
 - Allow simpler structures
- Error in shape of the function vs error of the predictions
- Bias in the predictions, λ parameter to control this tradeoff

Results: BS model

- Black-Scholes-Merton model
 - European call, put, and barrier options
 - 4 input variables, as the model is homogeneous in the strike
 - Vanilla options: data generation is fast due to analytical formulas to both price and greeks
 - Barrier options: Crank-Nicolson scheme for the BS PDE, greeks are numercially approximated
- $\sim 10^{-7}$ MSE in the prices, $\sim 10^{-6}$ MSE for the greeks
- Good visual alignment across the input parameter space

Results: BS model

0.6

0.7

0.8

0.9

Moneyness

1.0

1.1

1.3

1.2

0.6

0.7

0.8

0.9

Moneyness

1.0

1.1

1.2

		call		put	
		64 8 tanh $\lambda=0.5$		128 8 tanh $\lambda=1.0$	
		tanító adathalmaz	teszt adathalmaz	tanító adathalmaz	teszt adathalmaz
ár	MSE	1.6674e-07	1.2237e-07	8.9815e-07	6.4966e-07
Δ	MSE	1.1981e-05	1.0109e-05	9.1642e-06	5.8899e-06
$\theta_{ au}$	MSE	4.8399e-06	8.6058e-07	9.6393e-06	1.8052e-06
ν	MSE	4.6260e-06	2.7756e-06	6.1357e-06	4.1319e-06
ρ	MSE	6.4467e-06	2.6898e-06	7.3239e-06	3.1663e-06

1.3

1.3

Results: BS model implied volatility

- Partial derivative wrt. the option price is $\frac{1}{\gamma}$.
- Exploding gradient towards ITM or OTM
 - Instable learning
- Transforming moneyness to logarithm of the time values leads to much better performance

Results: BS model implied volatility

Results: Heston model

- Heston model
 - European call, put and barrier options
 - 8 input variables, as the model is homogeneous in the strike
 - Semi-analytical formula is available for vanilla options
 - For barrier options, solving the Heston PDE in three dimensions
 - Craig-Sneyd scheme to account for the cross partial derivative term
- Data generation is much slower
- Higher errors compared to the Black-Scholes model

Results: Heston model

- Calibration
 - Optimizing the model parameters on the distance between model and observed prices
 - Non-convex optimization
 - Fast if we can calculate the prices efficiently

- Inclusion of exotic payoff leads to better capture of forward skew and smile
 - Increase in the calibration time

• Calibrating to synthetic market data

- Acceptable visual fit
- Large error in parameters, due to the DNNs error in the prices

Possible improvements

- Implementation in a low-level programming language (C++)
- Computational graph for the PDE solver algorithm to reduce the data generation runtime
 - Memory issues, as sparse matricies are not supported
 - Interpolation on the grid is not possible (easily)
- Fourier network operators
 - DNNs are learning the PDE itself

References

- <u>https://www.math.elte.hu/thesisupload/thesisfiles/2025msc_actfinmat2y-cj49ch.pdf</u>
- https://github.com/HKristof136/msc_thesis_2025