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Introduction: derivative pricing

• Derivatives
• Option, barrier option

• Price: infimum of the prices of hedge strategies
• Dynamic delta hedging

• In the options market prices are quoted in implied volatility
• Convention to which implied volatility

"Implied volatility is the wrong number to put into the wrong formula to get the right price.„
Riccardo Rebonato



Introduction: derivative pricing

• We are also interested in the sensitivites or risks
• Partial derivatives of input parameters (underliers)
• „option greeks”

• Black-Scholes-Merton model, 1973
• First consistent option pricing model
• Closed formulas for vanilla options
• Constant volatility



Introduction: derivative pricing

• Problems with the BS model
• Volatilities calculated from prices observed in the market do not 

reflect the constant volatility assumption
• Implied volatility is dependent on expiry and strike
• Skews and smiles of the implied volatility surface

• More complex dynamics are able to capture the properties 
of observed implied volatility surface
• Local volatility models
• Stochastic volatility models
• Jump models



Introduction: derivative pricing

• Basic payoffs in most of the cases have fast (semi-)analytical 
solution for the price

• Exotic payoffs often require numerical algorithms
• Analytical formula is not known
• PDE solvers, tree based methods, Monte-Carlo simulation

• Solving for the BS implied volatility is also an iterative numerical 
algorithm

• Stochastic yield curve modelling, including jump processes, 
stochastic time-change, …?



Introduction: neural networks

• Class of machine learning algorithms
• Learn complex relationships or patterns in the data
• Prediction

• Feedforward neural networks
• Composition affine transformations and non-linear activation functions

• Convolutional DNN, Resnet, LSTM, …
• Black box
• In most real world applications, DNNs are used to approximate an unknown 

function in a data driven fashion.



Neural networks for derivative pricing

• DNNs can be used to approximate known functions
• Why?

• Calculation leads to inefficient algorithm
• Partial derivatives require numerical approximation

• Evaluation of DNNs is efficient
• O(size of computational graph)
• Backpropagation algorithm provides the partial derivates in the same complexity
• All of them at the same time

• In derivative pricing, these properties can lead to significant computational 
speedup
• Approximation  arbitrage free



Neural networks for derivative pricing

• Cons:
• DNNs extrapolate poorly
• Overfitting: accuracy is very high for the prices, but poor for the greeks

• Data?
• Market observations
• Synthetic data generation

• Training on synthetic datasets are pricing model dependent



Results: BS model

• Implementation in Python
• Perfomance limitations
• PyTorch, Tensorflow

• Greek regularization
• Derivative informed learning
• MSE of the neural network to the exact greeks are added to the 

price-MSE in the loss function

• Less prone to overfitting
• Accelerate training process
• Allow simpler structures

• Error in shape of the function vs error of the predictions
• Bias in the predictions, λ parameter to control this tradeoff



Results: BS model

• Black-Scholes-Merton model
• European call, put, and barrier options
• 4 input variables, as the model is homogeneous in the strike

• Vanilla options: data generation is fast due to analytical formulas to both price and greeks
• Barrier options: Crank-Nicolson scheme for the BS PDE, greeks are numercially approximated

• ~10−7 MSE in the prices, ~10−6 MSE for the greeks

• Good visual alignment across the input parameter space



Results: BS model



Results: BS model implied volatility

• Partial derivative wrt. the option price is 1
𝜈

.

• Exploding gradient towards ITM or OTM
• Instable learning

• Transforming moneyness to logarithm of the time values leads to 
much better performance



Results: BS model implied volatility



Results: Heston model

• Heston model
• European call, put and barrier options
• 8 input variables, as the model is homogeneous in the strike
• Semi-analytical formula is available for vanilla options

• For barrier options, solving the Heston PDE in three dimensions
• Craig-Sneyd scheme to account for the cross partial derivative term

• Data generation is much slower

• Higher errors compared to the Black-Scholes model



Results: Heston model



Results: Calibration

• Calibration
• Optimizing the model parameters on the distance between model and observed prices
• Non-convex optimization
• Fast if we can calculate the prices efficiently

• Inclusion of exotic payoff leads to better capture of forward skew and smile
• Increase in the calibration time



Results: Calibration



Results: Calibration

• Calibrating to synthetic market data
• Acceptable visual fit
• Large error in parameters, due to the DNNs error in the prices



Results: Calibration



Possible improvements

• Implementation in a low-level programming language (C++)

• Computational graph for the PDE solver algorithm to reduce the data 
generation runtime
• Memory issues, as sparse matricies are not supported
• Interpolation on the grid is not possible (easily)

• Fourier network operators
• DNNs are learning the PDE itself
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