Variational autoencoders in time series analysis

Péter Nemesi László Varga

Al Research Group Artificial Intelligence & Data Science Eötvös Loránd University

ELTE AI Research Seminar

June 17, 2025

Péter Nemesi, László Varga (ELTE)

VAEs in TS analysis

- 2 Variational autoencoders
- 3 Implementation and results
- 4 Conclusions, further work

- Strategic goal: mimic an **arbitrary** empirical time series using variational autoencoders
- Tactical goals: mimic samples from important, well-known time series models (SARIMA, GARCH, fractional Brownian motion) with variational autoencoders
- Possible applications: forecasting, classification/clustering, scenario analysis, volatility estimation

Autoencoder

• Encoder: input vector $\mathbf{x} \in \mathbb{R}^d$ is mapped to latent vector $\mathbf{h} \in \mathbb{R}^k$, where usually k < d:

$$\mathbf{h} = f_{enc}(\mathbf{x}),$$

where f_{enc} is a multi-layer neural network.

 Decoder: from the latent vector, we reconstruct vector x̂ ∈ ℝ^d adatot:

$$\hat{\mathbf{x}} = f_{\text{dec}}(\mathbf{h}).$$

• Goal: $\hat{\mathbf{x}} \approx \mathbf{x}$, as well as we can

Variational Autoencoder

- We teach a distribution in the latent space
 - $p_{\theta}(\mathbf{z} \mid \mathbf{x})$ is not tractable
 - the encoder (inference network) does not return a single vector, but a distribution $q_{\phi}(\mathbf{z} \mid \mathbf{x})$, where ϕ is a vector of parameters and is usually Gaussian.
- The decoder (generative network) tries to reconstruct x using the conditional distribution p_θ(x | z)

Péter Nemesi, László Varga (ELTE)

VAE – score function and β -VAE

- Score function
 - $D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p_{\theta}(z \mid x)) \longrightarrow \min_{\phi}$
 - Equivalent formulation: $\underbrace{\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right]}_{\text{KL}} - \underbrace{D_{\text{KL}} (q_{\phi}(z \mid x) \parallel p(z))}_{\text{KL}}$

reconstruction element

KL element

β-VAE (Miroslav et al., 2021): the KL element is weighted by an additional parameter:

 $\mathbb{E}_{q_{\phi}}\left[\log p_{\theta}(x \mid z)\right] \ - \ \beta \ D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p(z)).$

- If $\beta > 1$, then the KL element is punished stronger, so the quality of the reconstruction may deteriorate
- If $\beta < 1$, then the KL element is less punished, the latent space will be of less importance

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

VAE – score function and β -VAE

- Score function
 - $D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p_{\theta}(z \mid x)) \longrightarrow \min_{\phi}$
 - Equivalent formulation: $\underbrace{\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right]}_{\text{reconstruction element}} - \underbrace{D_{\text{KL}} \left(q_{\phi}(z \mid x) \parallel p(z) \right)}_{\text{KL element}}$
- β-VAE (Miroslav et al., 2021): the KL element is weighted by an additional parameter:

$$\mathbb{E}_{q_{\phi}}\left[\log p_{\theta}(x \mid z)\right] \ - \ \beta \ D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p(z)).$$

- If $\beta > 1$, then the KL element is punished stronger, so the quality of the reconstruction may deteriorate
- If $\beta < 1$, then the KL element is less punished, the latent space will be of less importance

< ロ > < 同 > < 回 > < 回 >

- The codebase is available on Github: https://github.com/kornyik/ML-StochTS, on branch *Playground*
- Runs are governed by a yaml config file
- Possible layers in the VAE network
 - Linear
 - GRU
 - LSTM
 - Conv1d, ConvTranspose1d
- Activation functions: ReLU, LeakyReLU, Tanh, Sigmoid, ELU, GELU

- First attempts no success
- Breakthrough:
 - following the ides of Acciaio et al. [2024] and Bühler et al. [2020]: the shape of the VAE should be a 'barrel', instead of the typical 'hourglass'
 - include LSTM layers
- AR(1) sample with AR parameter α ∈ [0.6, 0.99] could be reconstructed
- ARMA(1) sample with large AR parameter and small MA parameter could be reconstructed

(4) (5) (4) (5)

Layer structure to reconstruct ARMA processes

Following Bühler et al (2020), we used the following network structure:

Layer	Output Shape	Nr of parameters
Input Encoder	[32, 128, 1]	
Linear LeakvReLU	[32, 128, 16]	32
LSTM Tanh	[32, 128, 16]	4 352
Linear Tanh	[32, 128, 16]	272
Reparametrization		_
\dot{L} inear (μ)	[32, 128, 2]	34
Linear (<i>o</i>) Decoder	[32, 128, 2]	34
Linear Tanh	[32, 128, 16]	48
LSTM Tanh	[32, 128, 16]	4 352
Linear Tanh	[32, 128, 16]	272
Linear	[32, 128, 1]	17
Total parameters		< <u>9413</u>
ó Varga (ELTE)	VAEs in TS analysis	ELTE AI R

9/13

Results

Posterior collapse: the approximate posterior becomes almost equal to the prior: $q_{\phi}(z \mid x) \approx p(z)$. This means that the

- latent space is underutilized
- model behaves like a regular autoencoder

To avoid posterior collapse, both parts of the score function have to be assessed.

Péter Nemesi, László Varga (ELTE)

VAEs in TS analysis

Achievements:

- We can mimic samples from stationary ARMA processes with small positive AR polynomial roots
- We have developed a codebase useful for wider testing purpose
- Challenge: runtime (the bottleneck is the time needed for ARMA model fitting)

• Further plans:

- Calibrate the network so that it is able to recostruct stationary ARMA processes with small negative AR polynomial roots
- Enhance the deep network so that it is able to reconstruct samples from SARIMA and GARCH processes
- Forecasting on real life data (US GNP, Johnson&Johnson EPS, M5 competition: Walmart sales)
- Reconstructing of stochastic volatility (GARCH)

• Achievements:

- We can mimic samples from stationary ARMA processes with small positive AR polynomial roots
- We have developed a codebase useful for wider testing purpose
- Challenge: runtime (the bottleneck is the time needed for ARMA model fitting)
- Further plans:
 - Calibrate the network so that it is able to recostruct stationary ARMA processes with small negative AR polynomial roots
 - Enhance the deep network so that it is able to reconstruct samples from SARIMA and GARCH processes
 - Forecasting on real life data (US GNP, Johnson&Johnson EPS, M5 competition: Walmart sales)
 - Reconstructing of stochastic volatility (GARCH)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for the attention!

Questions / comments?

Acknowledgement: András Zempléni and Gábor Fáth

Péter Nemesi, László Varga (ELTE)

VAEs in TS analysis

- B. Acciaio, S. Eckstein, S. Hou: Timecausal VAE: Robust Financial time series generator, *arXiv preprint arXiv:2411.02947*, 2024, https://arxiv.org/abs/2411.02947.
- H. Bühler, B. Horvath, T. Lyons, I.P. Arribas, B. Wood: A data-driven market simulator for small data environments, *arXiv preprint arXiv:2006* 2020, https://arxiv.org/abs/2006.14498.
- A. Desai, C. Freeman, Z. Wang, I. Beaver: Timevae: A variational auto-encoder for multivariate time series generation, *arXiv preprint arXiv:2111.08095*, 2021, https://arxiv.org/abs/2111. 08095.
- F. Miroslav, M. Munib, M. Matthew, W. Jonas: Beta-VAE reproducibility: Challenges and extensions. *ArXiv preprint arXiv:2112.14278*, 2021, https://arxiv.org/abs/2112.14278.

3

< 日 > < 同 > < 回 > < 回 > < □ > <